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Abstract

The variational method of calculation of sensitivity functional (connecting first variation of
quality functional with variations of variable and constant parameters) for multivariate non-linear
dynamic systems, described by Volterra’s integro-differential equations of the second genus with
delay time, by use of the generalized quality functional of a dynamic system (the Bolts problem)
is developed. The presence of a discontinuity in an initial value of coordinates and association of
initial, final instants and magnitude of delay from constant parameters is taken into account also.
The base of calculation is the decision of corresponding integro-differential conjugate equations

for Lagrange’s multipliers in the opposite direction of time.

Key words: Variational method, sensitivity functional, integro-differential equation, conjugate

equation, delay time.

1. Introduction

The problem of calculation of sensitivity functional (SF) (connecting first variation of
quality functional with variations of variable and constant parameters) and sensitivity coefficients
(SC) (components of vector gradient from quality functional according to constant parameters) of
dynamic systems are main at the analysis and syntheses of control laws, identification,
optimization [1-7]. The first-order sensitivity indexes are most used. Later on we shall examine

only SF and SC of the first-order.
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Consider a vector output x(¢) of dynamic object model under continuous time Z‘E[to,tl]

b

implicitly depending on vectors parameters G(¢), 0., and functional / constructed on the basis of

x(t) under tE[tO,tl]. The first variation &/ and variations OC(f) are connected with each

other with the help of a single-line functional — SF with respect to variable parameters i(7):
tl

dg(n! = f V(¢£)da(t)dt . SC with respect to constant parameters Ol are called a gradient from /
fo

on a: (dI/ da)T = Vg/. SC are a coefficients of single-line relationship between the first

variation of functional &/ and the variations of constant parameters O:

m

dgl = (dl /da)da = E(al/aaj)aaj.

j=1

For simplest classes of dynamic systems it is shown, that at the SC calculation it is possible
to pass from a solution of the bulky sensitivity equations to a solution of the conjugate equations
— conjugated with respect to object dynamic equations. Method of receipt of conjugate equations
(it was offered in 1962) is cumbersome, because it is based on the analysis of sensitivity
equations, and it does not get its developments.

Variational method [4], ascending to Lagrange’s, Hamilton’s, Euler’s memoirs, makes
possible to simplify the process of determination of conjugate equations and formulas of account
of SC and SF. On the basis of this method it is an extension of quality functional by means of
including into it object dynamic equations by means of Lagrange’s multipliers and obtaining the
first variation of extended functional in phase coordinates of object and on interesting parameters.
The dynamic equations for Lagrange’s multipliers are obtained from a condition of equality to
zero of appropriate components (relative to phase coordinates) of the first variation of an
extended functional. Given simplification of first variation of extended functional brings at
presence in the right part only parameter variations, i.e. it is produced the SF. If all parameters are
constant then the parameters variations are carried out from corresponding integrals and at the
final result in obtained functional variation the coefficients before parameters variations are the
required SC. Given method was used in [8] for dynamic systems described by ordinary
continuous Volterra’s integral and integro-differential equations of the second genus.

In this paper the variational method of account of SF develops to more general continuous
many-dimensional non-linear dynamic systems circumscribed by the vectorial non-linear

continuous Volterra’s integro-differential equations of the second genus with delay time, with
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variable O(7) and constant O parameters and with reviewing of generalised quality functional

(the Bolts problem) and registration of dependencies: 1) disturbing actions of a object model

from initial instant; 2) of initial f#, and final # instants and of dead time from constant

parameters O .

2. Statement of the problem

Consider that the dynamic object is described by system of non-linear continuous integro-
differential equations (I-DE) with integral components of Volterra’s type of the second genus

with delay time T [7, p. 75] and variable O((¢) and constant O parameters

x(t) = f(x(2),x(t —71), y(1), y(t —7),0(¢),Q,1), ty <t =< tl, O<~, (1)

t
y(t) =r(a(t),a,ty,t) + fK(t,x(s),x(s -1),¥(5), (s - 1),0(s),0,5)ds, ty<t= /! ,
{0

to =ty (@), t' =1 (a0), T=7(@).

x(1) = (A1), &, 1), 1€ty —T,10), x(Zy) = Xo(OL 1) »

y(1) =, (a(1), 0.1), 1€ty —T.1).-

Here: the magnitudes of initial #, and final tl instants and also dead time T and initial values

x(ty) are known functions from constant parameters o: f =,(Ql), { = tl((_x), T=17(Q),
x(ty) = xo(Q,%y); x,y — a vector-columns of phase coordinates; ¢i(¢),o — vector-columns of
interesting variable and constant parameters; f(-), Y,(), ("), K(), ¥, (), (@), /! (o),
©(a), xp(-) — known continuously differentiated limited vector-functions. The phase

coordinates X, y in an index point #;, makes a discontinuity if:
+ _ ~ _
X (fo) = X(to + O) = Xo(O(.,to) # X(to - O) =X (fo) = wx(a(to),a,fo),
+ ~ _ — ~ —
y (ty) = y(tg +0) = r(aly), 0.fy,19) = ¥(1o=0) =y (f) =, (Aty), 01p)-
But at the expense of an integration in a model (1) phase coordinates become continuous in
instants £y + nt, n =1, 2, ---. Here is designated: x+(t0) = X(ty +0) — value of a phase coordinate

to the right of a point #,, and accordingly x  (¢;) = x(#; — 0) — to the left of a point £.

The model of a measuring device is given as
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n(E) = (x(0), (), 8(0), 1), 1€ 101", 2)
where n(+) is also continuous, differentiated, limited (together with the first derivatives)
vector-function. The required parameters c(¢), o are inserted also in (2). Dimensionality
of vectors x, ¥ and m in general event can be different.

On the basis of output coordinates of a measuring device 1 the quality functional of a

dynamic system is constructed:

1
t

1(@) = [ fo((0),8(0), @, 0)de+ i(n(e)), @, 1), 3)
10

Conditions for functions f;,(-), /() are the same as for f(-), r(*), K(*), #, ("), tl('), (),

V()5 X9 ()5 Wy (), ete.
With use of a functional (3) in the optimization problem (in the theory of optimal control)
known as the Bolts’s problem. From it as the individual variants follows: Lagrange’s problem

(when there is only integrated component) and Mayer’s problem (when there is only second

component -

function from phase

L DE - > coordinates at a
n ! I finishing point).

" | [SoOdi+ () [T With the

IE d > 0 purpose of

’_’ simplification of

Fig. 1. The scheme of interaction between variables in (1) — (3) appropriate

deductions with

preservation of a generality in all transformations (1) — (3) there are a two vectors of parameters

0((?),a. If in the equations (1) — (3) the parameters are different then it is possible formally to
unite them in one vector (¢) are O, to use obtained outcomes and then, taking into account a
structure of a vectors 0((#), o, to make appropriate simplifications.

The scheme of interaction between variables of object model, measuring device and quality
functional is shown in fig. 1.

By obtaining of results the obvious designations:

J(0) = f(x(2),x(2 =), (1), (- T), A1), O, 1), 1(2) = (1), O g 1),
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K(1,5) = K(£,x(5), x(s =), y(5), (s = 1), (1), @y5) , (1) = (x(£), (1), &(1), @ 1),
fo(0) = fo0),8(0),0,0), 1, = [((t), 0.1

are used.

Let's pass from the integro-differential equations (I-DE) to integral equations (IE), we shall
generalize results of paper [9] on more general models (15), (16) with variables and constant
parameters 0(¢), o and then we shall return to initial variables (see 6. Appendix).

The convenience of a integro-differential model consists in its structural universality. At
simplification of a model it is enough in final results to convert in a zero appropriate addends.

This reception we shall apply in a final part of a paper.

3. Basic result

Conjugate equations have the form

)= 0TD D 20 00
0x (1) 0x(1) 81fl(f) ax(z‘)
Zl
+[y ") aK(s)t)d £1( t—t)[%i(t+r)%(;ﬂ+
1
v (1 )aK(at (t)-l-‘t) f y( )aK(st+'c)d 1, tE[tO,tl),
M) =01,
of (1) aK(f f) afo (1) aﬂ(f)
z +d 4
=k i) @
Zl
+[y ") aK((S)t)d £1( r—t)[xﬁ(t+r)%+
1
LD (1 )aK(z‘ , L+ 7T) aK(st+'c)d 1 4o tstl;

v(0) JJ”

1

af(t+r)+ 1 aK(t t+1:) 6K(st+'c)d

Ve (D) =10 =T= A (1 +7) ()= e PR
1010 ~e-0pl+9 LD o )—GKS o
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1
7. . 0K(s,t+7)
+ ) ————=ds |, tg—-t=<t=<t,.
fYy() ay(t) ] 0 0

t+T
here ) = 21D g 1y _Ih@Hen(e) 4y
(') ax(r') (") ay(t')
if0<z, 1(z) =0if z<0.

is a single function: 1(z) =1

SF are calculated under the formula:

ol = 6&0)] + 6&(1‘1)1 + 661; %)

I
Oci(ry =} 9fo(1) (@)  9fo(®)

() ()8f(t)
oL () oa() o) M

y() oM 90(7)

1 0K (2 1) 9K (s,t)

y(t)a() f()a()d

oa(t)dt +

0 81]) (t) _T 1py(t)
o [ OTET07 S

9(0) 10a(¢) dt;

tH—T

1
) 1[=[all(rl)a?(r) o (tl)ar(t)]6~(t)
o) om(t') aai() 93t

axo(Ol f)

vo,,

#1 (1g) T2 fx (L2

S ] = 3110 ) an(r') all(t ),
“ 6n(t) oo oo

1
ar(t) GK(t S)ds N

;f 8&9

0

+P (t)

1

1)

t

ar(z‘)

1
. ’ﬂ Afo(t) (0, fo(0) |

0K (s,t)
(0 da L

y(t) ds)dt +

le()

ty
SO O

lh—T

; [&(%)(@ _ f(to)) .

0
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+1(t =ty =N (tg + T (g +T-0) = f(ty +T+0)) +

+ O, (¢ )[a’”(t DK a0+ 10—ty 0K g+ T=0) = K(t' ot T+ 0))] -
0
1
~ foltg)+ fvy (r)(a”(’) _ K(ttg))dt +

tl

1 T dt
+1(t —t) -7 NHK(t,ty+Tt-0)-K(t,ty +T+0)]dt |— +
(& =19-7) [v,(OIK(1 )—K(1,14 )] =

o+t
1

K(t t) faK(t ,S)

ot

ar(t )

+|D (z )f(t)+CI> (t )[ ds]+

RUGL GG ]
(') o' ot'

+[1(t1 — 1 —’c)?xi(to +T)(f(ty+T-0)- f(tH +T+0)) -

~JA= 0 ax(t-7) d(t-7)  y(t—-7) d(t-7)

)

1
‘T ( o) de(t-1) (@) dy(t—t)) T

+ @ (O 10 —1g — (K g +T=0) = K(t' 1 +T+0)) -

LK) dxts =) 0K () dyts ) ds 1+
;g Ix(s=7) d(s-7) Iy(s-7) d(s-7)

tl

+1(t' =ty -7) fyg(t)(K(t,to+1:—O)—K(t,t0+r+0))dt—

fo+T

B () K (t,s) dx(s - ‘E) 0K (t,s) dy(s-T) dsdt ﬂ
f f(ax(s 1) d(s-1) ay(s—r) d(s—r)) da

Derivation of these equations is represented in section 6.
The obtained form of representation of the conjugate equations and SF allows easily to write

out outcomes with reviewing separately of differential and integrated models or their various

combinations.
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4. SF with use of a differential model for a object

The equations for an object model and measuring device look like:
(1) = f(x(0),x(t - ), 8(t),0,1), ty<t<t, 0<T,
to =to(00), 1 =1'(@), T=1(0). ©6)
x(t) = (A1), 0,1), tE[ty —T,ty), x(ty) = x¢(C1p);

() = M(x(6), &(e), @8, 1ELLg,t' ]

The form of a
L X n ‘! I quality functional (3)

DE > n0) > SO+ 1 () does not vary. The
t
- scheme of interaction
Fig. 2. The scheme of interaction between variables in (6), (3) between all variables

of a system is

represented in fig. 2.

In total results (4), (5) it is necessary to take into account an absence in functions f, 1

dependence from y(¢) and also vanishing of functions r, K, v, and variables vy ,(?), ¥, (¥):

ox(t) T om(t) oax(t) Tox(t)

k{c(z‘l) =CI>x(t1), fhstst, (7)

— 10 =A@

oL (¢ +1) 2 0+ D

N
V(@) =11 -7 ax(1)

, lp—T=sIt=I.

SF has a form:
ol = éa(t)] + 6&(1‘1)1 + Bal; (8)

I
- [ Ifo(®) (1) | /o0 | PO A)

GAON (1) o
on(t) aa(r)  ae(r) aai(r) |+ + f vx(t) 8Gi(1) d ;

elty)

()
H—T

N ll_all(t)an(t )6 (f)
) anr') aae)

5 1o ah(r)ana) o) ,
“ aﬂ(f) oo oo

axo(a to)

vo,,

#2(1g) T2 fx (L2
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f[af()(t) 57]@) afOOEt) f " (t)awx(t) dr + |:}\’7;c(t0)( axoga’tO)

m(¢) oJa to B f(tO)) ¥

lo-T

108" = 19— (tg + DS (g +T-0) = £ty +T+0)) - fo(fo)]%

o)+ all(tl)an(t) all(f) f(t) dr"

() ot ot

+[1(t1 — 1 —r)?»i(to +T)(f(typ+T-0)- f(tH +T+0)) -

1
t

- [0 I =0 41 T |55
ax(t-7) d(t-T) | do

fo

We received more the general result in relation to results of publications [8], [9], [11], [12].

5. SF with use of variants of an integro-differential model

Variant 5.1. In initial statement of the task (1), (2) the equations of a model of object and

measuring device vary:

x(t) = f(x(2),x(t —1),0(¢),0,1), tg<t=< tl, 0<t, x(ty)=x0(02),
t

y(8) =r(a(?),a,ty,t) + fK(t,x(s),x(s -1),¥(5), ¥(s —T),0(s),q,8)ds, ty<t= ! ; 9)
1o

to =to(00), 1 =1'(@), T=1(0).
X(t) = wx(a(t),a,f), fE[fO —T,fo), X(to) = XO(a,fo),

y(t) =wy(a(t)a(_xst)a te[tO _TﬂtO);

() = (), &(1), @ 1), tE 1o, 1.

X y n /! b
DE » [E » n() ffo(')dt +11(') —>

Fig. 3. The scheme of interaction between variables in (8), (3)

A\ 4

The scheme of interaction between variables of a object model, measuring device and quality

functional is shown in fig. 3.
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In total results (4), (5) it is necessary to take into account that 87]/ ox=0, ® x(tl) =0,

of (1)/ay(1) =0, of (£ +7)/ (1) = 0.

Variant 5.2. The equations of a object model and measuring device look like:

i(t) = FO(@0), y(t —),8(0),0,0), tg<t<t, 0<T,

t
y(8) =r(a(t),a,ty,t) + fK(t,x(s),x(s -1),¥(5), ¥(s —T),0(s),q,8)ds, ty<t= - (10)
1o

to =ty (@), t' =1 (00), T=7(@).

x(1) =, (a(1),0,2), tE[1y — T, 1), x(Zp) = X0 (1),
y(t) =wy(a(t)a(_xst)a te[tO _TﬂtO);

() = (1), &(t), @ 1), 1 Eltg,1' ]

The scheme of interaction between variables of a object model, measuring device and quality

functional is represented in fig. 4.

X y " i 1
’—> DE » IE > () [ oGyt +1,() >

[ 2

Fig. 4. The scheme of interaction between variables in (9), (3)

\4

In total results (4), (5) it is necessary to take into account that dn/dx =0, P x(tl) =0,
af(¢)/ox(t)=0, df (¢t +7)/dx(t) = 0.
Variant 5.3. The equations of a object model and measuring device look like:

x(1) = f(x(0),x(t =), y(1), y(t =), A1), Q. 1), fy <t =< i, 0<,
t

(1) = r(a(t),a,ty,1) +fK(t,S,y(s),y(S -1),a(s),q)ds, ty<t= 7 ,
0

to =ty (@), t' =1 (a0), T=7(@). 11
x(8) =g, (A1), 0, 0), 1€ty =T, 1), X(Zp) = x0(O 1),

y(t) =wy(a(t)a(_xst)a te[tO _TﬂtO);

() = M(x(8),3(0), G ), 1€ 1,1 ]
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X n tl I
E IE » DE > 1 (") > [ fo(Odt + 1) >
Yy %o

Fig. 5. The scheme of interaction between variables in (10), (3)

X is a basic variable. It satisfies to the differential equation. The variable y represents itself as
input for a basic differential model and y satisfies to an independent integral equation. The

scheme of interaction between variables is shown in fig. 5.
In total results (4), (5) it is necessary to take into account that 87]/ ay=0, & y(tl) =0,

0K (s,1)/9x(t) =0, dK(s,t +7T)/0x(t) =0.
Variant 5.4. The equations of a object model have the form:

i(t) = £(x(0),x(t =0, 00, p(t =0, 8(0). 1), fo<tst, 0<T.

t
y(8) = r(a(t),a,ty,t) + fK(t,x(s),x(s -1),0(s),a,8)ds, ty<t= ! ,
{0

T=1@), ty = ty(@), ' =1 (). (12)
X(t) = wx(a(t),a,f), fE[fO —T,fo), X(to) = Xo(a,fo),

y(t) = wy(a‘(t)a(_xst)a tE[tO - T,to) .

The variable y is auxiliary. It reflects rather simple integrated connection from a basic variable

X . The exit of a measuring device also depends only on a basic variable:

() = M(x(8),3(0), G ), 1€ 1,1 ]

I N RN 1

IE »| DE o n () [Fy G+ 1,¢) [—>

to

v

Fig. 6. The scheme of interaction between variables in (11), (12), (3)

The scheme of interaction between variables is represented in fig. 6.

In total results for conjugate equations (4) and SC (5) it is necessary to take into account that
m/ay =0, @, (¢') =0, 8K (s,1)/ay(r) = 0, 3K (s,1 +7)/ay(t) = 0.

This article continues research in [8, 9, 11, 12].
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6. Appendix

6.1. Passage to IE

In I-DE (1) the differential equation we write in the integral form

t
x(1) = xp(Q,2p) + ff(x(s),x(s -1),(5), y(s —T),0(s),q,8)ds, tg<t= ¢ (13)
{0

We use notations

=7(t R
(1) 7

o (XON ( x(@ro) ) _(xo(@to)
y(t)—( ) r(oc(t),a,ro,t)-(r(a(z),a,to,t))‘( 0 )

5~ ~ ~ _ f(X(S),X(S —T),y(S),y(S —"C),(NX(S),(_X,S) _
LD TEmDA0.69 2 (K(r,x(s),xm - 0,5, (5 -), a(s),a,s)) ) "
()Y 4 (@0,
= (K(t,s)) = K(t,s), Yla(r),o,t)= (lpy(&(t),a,t))’
and obtain IE
t
;(l‘)=F(a(t),a,to,t)+flz(l‘,)N/(S),y(S—T),a(S),a,S)dS, to sttl, (15)

A

V() = (a0, a.1), tE[ty ~T,1p).

In further also a notation

n@) =y (1), 0(r),a,t) (16)

is used for a model of a measuring device.

6.2. SF with use of an integral model (15)
We generalize results of paper [9] on more general models (15), (16) with variables and

constant parameters O(¢),0 and we receive the conjugate equations for basic Lagrange’s

multipliers y(¢)

L oKD | afy(0) an() R (s,1)
d(1 ds +
1= )T 550 f %50
1
aK(t ,1+7T) T, 0K(s,t+7) el
+1(t -T- t)[CI)(t )—a 50 tLy (S)—ay(t) ds], tystst. (17)
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The equation of account of Lagrange’s multipliers y(¢) appropriate to initial function of integral

equations with delay time (15)
1
M fy ()%{;ﬂc)d] ty—T=<t=ty, (18)

=1(t - P
V(0 =1(' ~t-n[a() a0

are obtained. Here: y(¢), Y(¢) are column vectors; ]l(t ) () = (1) 1(z) is single
a(e') o3 (c")

function: it is equal to zero under negative values of argument and is equal to unit under positive
values z . These conjugate equations are decided in the opposite direction of time (from ¢ ).
The form of the conjugate equations doesn't change, but they contain variables and constant

parameters (), QL.

From the conjugate equations (17), (18) it is possible to remove single function and to add

them a customary aspect.

If #)= tl -T stl , 1.e. length of an interval [¢,,, tl] transcends magnitude of a delay time T,

then:

i A 50 vt
v () = (0 )"’Kft(t)” a{s(f)) ;’;‘((g f ()"’a (f )t)d
+(¢ )—ath (t)H) thYT(S)%dS forfy<tst -7,

7 (1) - (1 )%{;”) flv U%d for g~ =1 =1y

If ¢ —t< ty» .. the magnitude of delay T transcends length of an interval [l‘o,t1 ], (in this

. 1 . .
case magnitude ¢, +T exceeds ¢ — goes out for an interval of object work):

v ()=o)

aKSt ,1) afo(l‘) (1) f ( )aKN(S t)d for £, <t=<t,
0y (?) aTl(t) ay (1) 9y (1)

?T(t) =0 for ¢ —T=<t=<{,
|

fy (S)Mdsforto T=t=t -7
e 0y ()
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SF for an integral model (15) has the form:
ol = 6&0)] + 6 1)] + 671,

afo(t)aﬂ(t) O ()3F(f) (tl)aK(t SN

P 'f an(r) oa(e)  aa(r) 1 aar) 30i(1)
f ()"’f(g )”d]am)dm IR 07 e s
t() -T ()
oI, (t") am(eh) a7 ()
~..1 = q) 6
a) " an@h aa(r1)+ ()aa( )] Ay

=1
oF (t) faK(t ) ol

oo

5.1 = all(t ) am(t') a11(1‘) +o()
an(t) oo oo

1o
1
afo(t) @) , 3@ , F@) L.,  9K(s,0) ‘0 w(t)
+f[ m() oa  da v o gal v ) aal dsldi+ [ ¥ V(O

t fh—T
ar(z‘ )
dt

o SR ) + 108 -y - TR 1y +1-0) = K1y +T+0))]+

ar(t) - K(t,ty))dt+

—fo(f0)+fY (f)(

tl

1 -1y -7) fyT(t)[l?(t,to +1-0) - K(t,ty +T+0)]dt ZL_(H
o

o+t

1

K(t z) faK(t s)

ot

(1) is]+
at'

7
_++

an(t) ol o

[cb(rl) [1(¢' -ty VK (' 1y +T—0) = K (¢, 1y +T+0)) -

aK(t ,8) dy(s - ‘c)
fay(s T) d(s—71)

ds]+

tl

+1(t' -ty - ) fyT (O[K (t,1y +7 - 0) = K(t,ty + T+ 0)]dr -
lo+T
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K (t,s) dy(s-1)
f ()fa Y(s-1) d(s-71)

dsdt

}d |
do

6.3. SF with use of an integro-differential model (1)

It is necessary in (17)—(19) to fulfil matrix transformations (differentiation, multiplication)

with the registration earlier entered notations (14), and also

7. () Oy e
v (yy(z))’ 7 O=hlos o)1= (?y (Z)), 7 0=l o 7o)
e (1 )_alur)an(t) [amﬂ)an(#). o1, (¢') (")

5 =D, tl ; O tl ,
@) o3¢y | an@e') axe) ') oy ( () @y ))

[AQN A 9x (O, )
oK (¢',t) | ox(r)’ @) | FE) | ea
W) | oK(E,) oK. ea | ar(d)
ax(t) oy JaL
1 0K (2 1) 1.9 (D) () 1.9 (D) 1 0K (2 ,8)
o) [ N( )a() @) S )a() @, ()7

dfo(t) an(?) =(3fo(f) m(®) . 9fo(1) M)
() ay() | an() ax(r) an(e) ()]

T,  9K(s,t) f (1) K (s, t) f (1) IK (s,1)
: (S)—am) (ma(r) (02 x()a() O )
Jao 6oc
(t) ar(t) x( )8x0( to) y([) ar(t),
q)(l)aK(l‘ t)_q) (1)M o (1)8K(t z),

! > [
PO s = 9L 4y () Dy

t

]ds , etc.

In the total we obtain the conjugate equations for Lagrange's multipliers

94



Yx(f) ® (t ) of (¢) q)y(t1)8K(tl,t) s dfo(t) () .

x(0) o) (o) ox(0)
. 1 e 01y () %
(! -r-t)[qnx(rl)‘”;fxt—(;‘) +q>y(tl)%’é)”)+
+t:flt[y’€(s) iG]
1o 0000 0
f FHOLIL 8 V2 (s) afy(é’)‘)]dw

1
H( -1 t)[d>x(t1)—a]; (yt(;’)r) v (BT g’y ( Z )* 0,

af(t+r) ( )aK(s,t+t) 1

+f[Yx() ]dS], toStSt;

Tl 1 0f(t+7) 1 0K (d 1+ 1)

V(@) =1t —t-0)[P (1) x +CI)y(t)—ax(t) +
‘ A+) 1, K51 +)

L[ O 00 TP e W)

01+ o ) K (¢ +7)
y(1) g ay(t)

6f(t+r) 0K (s,t + 1)
L[m() i PO

.. . . . . . ~ ~, 1 —
The first variation of a functionality / in relation to variable 0l(¢) and constant ¢((z ), O

Vo) = 1(t' -t =)@, (1)

lds ], ty—t=<t=<t,.

parameters, has three components - watch a formula (5):

O = dq(! +8 1 1 +dal (22)
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1 af(t) 1 aK(t t)
D, (t)———— )

1
oo ane | r e
P _i an(r) oa(e)  aai() 10 T mn

1
t

v [T s) M)
t

90(7)

91 (1)

= —lds
aal(t)

da(r)dt +

+v§()

Ny, (1)

9(0) 10au(¢) dt;

" o, (t) _T
rof—[ ()a() Yy (O———

- a]l(tl)a?(t) ® (tl)ar(t)]mt);
A iy o aa(t)

5.1 = {all(z )am(e) | L) |

aTl(t ) Ja o

ar(t) aK(tl P

;f 86’

0

+ @, (1)

+ @ (1)

axO(aal‘O) af(S)
oo ;{;

1
“afo) (o), 3% ()axom ) 4T ) ara)
tf m(t) da go.

1

"‘f[ x(s) aK(s 1)

f(t) a«p (z‘) _g(f) ”th( )]dt+

Ids

+17.5) dt + f [7x (1)

th-T

+ [%(r%[w — f o)+ 1 1y~ T f (g +T-0) = f (g +T+O))] +

0

1 8r(t )

+ @, ()] K1)+ 1(t = tg —T)K (£ 1y +T-0) = K (£ 1y +T+0)] = fo(t) +

0
1 1

: fvx(t)dt(ax‘)(a 0 i) + fvy(t)(ar(t)

— K(t,to))dt +
O

tl

H1(t' — 1y =) [y a1y +T=0) = f(g +T+0)]+

lO +T

tl

+ l(z1 —t) —T) fyg(t)[K(t,to +1-0)- K(t,ty + T+ 0)]dt di_0+
dao

o+t
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1

ar(t )+K(t t ) f

aK(t s)
t

(o )f(t)+q> () ds]+

1

an(t y ot o

+|_<I)x(t1)[l(z‘1 —ty—O(fty +T-0)- f(# +T+0))-

_tl of(s) dx(s-v)  f(s) dy(s- T))d]+
t{ax(s—r) d(s-7) 3)’(S v) d(s-7)

+ @ (O -1y —TNK (' 1y +T-0) = K(t' 1y +T+0))—

_tl K (t',s5) dx(s - ) N K (t',s) dy(s - )
t{ax(s—r) d(s-t) dy(s-7) d(s-71)

)ds]+

tl

Ut =1y =) [ (L[t +T=0)= f(tg +T+0)]+

o+t

tl

+1(t' =ty -7) fyﬁ(t)[K(t,to +1-0) = K(t,ty +7 +0)]dt -

o+t

1
t
—lfvi o f( of(s) dx(s-v) () dys-v\, . _
{0

o ox(s-t) d(s-t) Jdy(s—71) d(s-71)

_ () 0K (t,s) dx(s- ’c) 0K(t,s) dy(s-T1) dsdt-ﬂ .
f f(ax(s T) d(s-7) ay(s—r) d(s -7) da :

" i /! | It is expedient to add the conjugate equations for
Lagrange's multipliers (21) too form of the integro-
, y ; differential equations.
t 1 p

1

We enter new variable

Fig. 7. Triangular area and order |

) . t
of an integration CI)x(tl) 4 sz(S)dS _ ;\{C(t)’ either
t
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Yg(l‘) = —?\7); (1), 7»7; (tl) =0 x(z‘l), and change an order of integrating in double integral inside
i !
of triangular area (see fig. 7) |i.e. f f A(t,s)ds dt= f f A(s,t)dsdt |. Then conjugate equations

tolo fot

(21) are noted as (4) and SF (see (22)) are calculated under the formula (5).

Discussion

In this paper the variational method of calculation SF and SC for the multivariate nonlinear
dynamic systems described by general continuous vectorial Volterra’s integro-differential
equations of the second genus with dead time is developed.

The variational method is based on invariant expansion of initial functional for system due to
inclusion in it of the dynamic equations of object model and of measuring device model with the
help of Lagrange's multipliers and on computation of the first variation expanded functional on
phase coordinates of model and in required parameters. The equating with a zero of the functions
facing to variations of phase coordinates gives the dynamic equations for Lagrange's multipliers.
The simplified first variation represents required sensitivity functional.

Novelty and generality of results consists in a generality of dynamic object model , of the
measuring device model and of quality functional. In models both variables and constant
parameters are present. In a basis of calculation of sensitivity indexes the decision of the integro-
differential equations of object model in a forward direction of time and obtained integro-
differential equations for Lagrange's multipliers in the opposite direction of time lays.

Received in paper SF are more general in comparison with known in the scientific literature.

It is shown, that by consideration of more simple dynamic systems it is enough to put in the
received results to zero corresponding additives — look sections 4 and 5.

Results are applicable at the decision of problems of identification, adaptive optimal control

and optimization of dynamic systems, i.e. they allow to create precision systems and devices.

Conclusion

Variational method of calculation of SC and SF allows to do a generalization on more
complex dynamic system classes, described by: integral and integro-differential equations
with additional some dead times and different classes of discontinuous dynamic

equations.
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